Identifying pollutant sources in tidally mixed systems: case study of fecal indicator bacteria from marinas in Newport Bay, southern California.
نویسندگان
چکیده
This study investigates the contribution of several marinas to fecal indicator bacteria impairment in Newport Bay, a regionally important tidal embayment in southern California. Three different fecal indicator bacteria groups were assayed, including total coliform, Escherichia coli, and enterococci bacteria, all measured using the IDEXX Colilert and Enterolert system. To document temporal variability in the fecal indicator bacteria signal, water column samples (n = 4132) were collected from two marinas over time scales ranging from hours to months. To document spatial variability of the fecal indicator bacteria signal, water column and sediment samples were collected from a number of sites (n = 11 to 36, depending on the study) in and around the two marinas, over spatial scales ranging from meters to kilometers. To identify the dominant temporal and spatial patterns in these data a statistical approach--Empirical Orthogonal Function analysis--was utilized. Finally, to clarify the transport pathways responsible for the observed temporal and spatial patterns, fecal indicator bacteria data were compared to simultaneous measurements of tidal flow, temperature, and salinity. The results of this field effort collectively implicate runoff--both dry weather runoff at sampling sites located near some storm drains and wet weather runoff at all sites--as a primary source of fecal indicator bacteria in the water column and subtidal sediments. The results and analysis presented here reinforce the growing body of evidence that management of fecal indicator bacteria impairment in the coastal waters of southern California will require developing long-term strategies for treating nonpoint sources of both dry weather and stormwater runoff.
منابع مشابه
Seasonal detection of human viruses and coliphage in Newport Bay, California.
Recent studies have shown that the fecal indicator bacteria (FIB) currently used to indicate water quality in the coastal environment may be inadequate to reflect human viral contamination. Coliphage was suggested as a better indicator of human viral pollution and was proposed by the U.S. EPA as an alternative indicator for fecal pollution in groundwater. In this study, we investigated the occu...
متن کاملDensities of Fecal Indicator Bacteria in Tidal Waters of the Ballona Wetlands, Los Angeles County, California
—Densities of fecal indicator bacteria (FIB) represented by total coliforms, E. coli and enterococci were measured within tidal channels of the Ballona Wetlands (Los Angeles County) to see if the wetlands act as a sink or source for these bacteria and to measure increases in FIB densities during wet weather. Samples were collected on 10 days over a 1-yr period beginning February 2003 at four si...
متن کاملSmall drains, big problems: the impact of dry weather runoff on shoreline water quality at enclosed beaches.
Enclosed beaches along urban coastlines are frequent hot spots of fecal indicator bacteria (FIB) pollution. In this paper we present field measurements and modeling studies aimed at evaluating the impact of small storm drains on FIB pollution at enclosed beaches in Newport Bay, the second largest tidal embayment in Southern California. Our results suggest that small drains have a disproportiona...
متن کاملFecal indicator bacteria (FIB) levels during dry weather from Southern California reference streams.
High levels of fecal indicator bacteria (FIB) in surface waters is a common problem in urban areas that often leads to impairment of beneficial uses such as swimming. Once impaired, common management and regulatory solutions include development of total maximum daily loads (TMDLs) and other water quality management plans. A critical element of these plans is establishment of a "reference" level...
متن کاملMethanotrophic populations in estuarine sediment from Newport Bay, California.
Methanotrophic populations have been studied in Newport Bay estuary, Southern California. Environmental clone banks were generated for 16S rRNA genes specific to methanotrophs and for a diagnostic functional gene, pmoA, encoding a conserved subunit of the particulate methane monooxygenase. These clone banks contained sequences specific to types I and II methanotrophs typically found in aquatic ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental science & technology
دوره 39 23 شماره
صفحات -
تاریخ انتشار 2005